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Abstract. An exact analytic expression of the relative escape rate (RER) for Brownian particles in a
bistable sawtooth potential driven by correlated white noises is obtained. It is found that the RER vs.
R (the multiplicative to the additive noise intensities ratio) exhibits a suppression platform for positive
correlation, whereas the resonant activation and suppression platform appear successively for negative
correlation. The mechanism of the present phenomena is explained. The effects of a nonlinear potential on
the RER are studied. We have numerically calculated the RER of the system under a parabolic potential
and a quartic potential and have compared the differences of the RER in the case of the linear potential
and the one of the nonlinear potential.

PACS. 05.40.-a Fluctuation phenomena, random processes, noise, and Brownian motion – 82.40.Qt
Complex chemical systems – 02.50.-r Probability theory, stochastic processes, and statistics

1 Introduction

The escape problem of Brownian particles has become
ubiquitous in scientific fields, which has been widely stud-
ied in Markovian and non-Markovian processes since the
pioneering contributions of Arrhenius and Kramers [1–3].
The early work mainly focused on the escape rate in a
system driven by either additive or multiplicative noise.
Doering and Gadoua investigated the activation rate of
a system in the presence of a fluctuating barrier, they
found a novel phenomenon called Resonant Activation [4].
Bier et al. studied the thermally driven escape rate
over a dichotomously fluctuating barrier [5]. Furthermore,
Madureira et al. considered a system driven simultane-
ously by uncorrelated multiplicative colored and additive
white noises [6]. They discussed thermally driven escape
from a double well over a fluctuating barrier in alternative
approaches.

In recent years, the escape rate of a bistable system
driven by correlated multiplicative and additive noises
has attracted great interest. Madureira et al. have stud-
ied the escape rate of a bistable system driven by cor-
related additive and multiplicative white noises [7]. It is
shown that the escape rate can exhibit Giant Suppres-
sion for a negative correlation coefficient between the ad-
ditive and multiplicative noises. Fu et al. have studied the
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thermal activation problem of a bistable system driven by
correlated multiplicative colored noise and additive white
noise by means of numerical simulations [8]. The model
describes the correlated function between noises as Dirac
δ form. Moreover, Mei and Jia et al., respectively, have
examined the escape problem of a stochastic system with
colored correlation between additive and multiplicative
noises [9,10].

It must be pointed out that in a recent work by
Tessone et al. [11], the idea of correlation between addi-
tive and multiplicative noises has been generalized to the
study of stochastic resonance. In reference [11], the au-
thors have analyzed the effects caused by the simultaneous
presence of correlated additive and multiplicative noises
on stochastic resonance. Besides the standard potential
modulation, a time-periodic variation of the correlation
between the two noise sources is also considered. It is seen
that, stochastic resonance, characterized by the signal-to-
noise ratio and the spectral amplification, is characteris-
tically broadened. The broadening can be controlled by
varying the relative phase shift between the two types of
modulation force. And a remarkable aspect of the results
indicates an alternative route of controlling the stochastic
resonance phenomenon along the reasoning put forward
in reference [12].

In reference [8], we have studied the escape rate of a
bistable system driven by correlated multiplicative colored
noise and additive white noise terms through numerical
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simulations. However, the relevant analytical approach re-
mains to further investigation. In order to see clearly the
effects of the noise cross-correlation and “color” on the
escape rate, the present paper, as a first stage, considers
a piecewise linear potential model driven by correlated
white noise terms. Based on the obtained exact analytical
expression of the escape rate, one can further study the
escape rate of particles in a piecewise linear potential with
correlated colored and white noises. Moreover, it is possi-
ble to develop a general theory which is expected to extend
the investigations of escape rates in generic systems driven
by correlated colored and white noises. In the present pa-
per, we consider two folds: One is to calculate the relative
escape rate in a bistable sawtooth system which is driven
by correlated multiplicative and additive white noises. The
exact analytic expression of the relative escape rate is ob-
tained. Some novel phenomena are presented. Another is
to study the effects of a nonlinear potential of a system on
the escape rate. The escape rates of the system driven by
correlated multiplicative and additive white noises under
a parabolic potential and a quartic potential are calcu-
lated, respectively. The differences of the escape rate in
the case of the linear potential and the one of the nonlin-
ear potential are compared. Also, the change of the escape
rate with the increase of nonlinear degree of the potential
is discussed.

2 General formula

We consider a one dimensional system driven by correlated
multiplicative and additive noise, which is described by a
Stratonovich Langevin equation,

ẋ = −V ′ (x) + g (x) ξ (t) + η (t) , (1)

where V (x) is a potential function, and ξ (t) and η (t) are
Gaussian white noises with

〈ξ (t)〉 = 〈η (t)〉 = 0,

〈ξ (t) ξ (t′)〉 = 2Qδ (t− t′) , (2)

〈η (t) η (t′)〉 = 2Dδ (t− t′) , (3)

and

〈ξ (t) η (t′)〉 = 〈ξ (t′) η (t)〉 = 2λ
√
QDδ (t− t′) , (4)

in which λ, the correlation coefficient, measures the degree
of cross-correlation between the additive and multiplica-
tive noises, Q is the strength of the multiplicative noise,
and D the one of the additive noise.

Equation (1) together with equations (2–4) can be
transformed into a equivalent stochastic differential equa-
tion [13]

ẋ = −V ′ (x) +G (x) ζ (t) , (5)

where

G (x) = D
1
2

[
Rg2 (x) + 2λ

√
Rg (x) + 1

] 1
2
, (6)

〈ζ (t) ζ (t′)〉 = 2δ (t− t′) , (7)

in which R = Q/D. The Fokker-Planck equation (FPE)
corresponding to equation (5) with equations (6) and (7)
is given by

∂P (x, t)
∂t

=− ∂

∂x
[−V ′ (x) +G (x)G (x′)]P (x, t)

+
∂2

∂x2
G2 (x)P (x, t) . (8)

The stationary probability density (SPD) can be obtained
from equation (8)

Pst (x) =
N[

Rg2 (x) + 2λ
√
Rg (x) + 1

] 1
2

exp [−Φ (x) /D] ,

(9)

where N is the normalization constant, and

Φ (x) =
∫ x

V ′ (y)H2 (y) dy, (10)

H (x) =
[
Rg2 (x) + 2λ

√
Rg (x) + 1

]− 1
2
. (11)

When a particle passes through interval [x−, x+] under
a reflective and an absorbable boundary, the mean first
passage time (MFPT) is determined by [1]

TL (R, λ) = D−1

∫ x+

x−

H (x) exp [Φ (x) /D] dx

×
∫ x

−∞
H (y) exp [−Φ (y) /D] dy. (12)

Here we define the escape rate κ as the inverse of the
MFPT, i.e., κ = 1

T . For the convenience of discussion, we
use the relative escape rate ν (R, λ) which is described by
the following form

ν (R, λ) =
κ (R, λ)
κ (R = 0)

=
T (R = 0)
T (R, λ)

· (13)

3 Linear model

The potential of the bistable sawtooth model is as-
sumed as

V (x) =



−2bx/L− 2b, −∞ < x ≤ −L/2

2bx/L, −L/2 ≤ x ≤ 0

−2bx/L, 0 ≤ x ≤ L/2

2bx/L− 2b, L/2 ≤ x <∞

, (14)

and g (x) is given by

g (x) =

{
c, −∞ < x ≤ −L/2, 0 < x ≤ L/2

−c, −L/2 < x ≤ 0, L/2 < x <∞
.

(15)
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H (x) =

8>><
>>:

α−
1
2 =

h
c2R+ 2λc

√
R+ 1

i− 1
2
, −∞ < x ≤ −L/2, 0 < x ≤ L/2

β−
1
2 =

h
c2R− 2λc

√
R+ 1

i− 1
2
, −L/2 < x ≤ 0, L/2 < x <∞

,

Now we derive the MFPT when a particle goes through
the interval [−L/2, L/2]. Combining equation (12) with
equations (14–15), the MFPT is obtained

TL (R, λ) = D−1

∫ L/2

−L/2
H (x) exp [Φ (x) /D] dx

×
∫ x

−∞
H (y) exp [−Φ (y) /D] dy, (16)

where

See equation above

and Φ (x) is given by equation (10).
The exact analytical expression of equation (16) can

be derived by means of partial integration,

TL (R, λ) =
L2D

4b2
[

(αβ)
1
2 [exp (q/α) (1− exp (−q/β))

+ (1− exp (q/β)) (exp (−q/α)− 1)]

+α [exp (q/α) + exp (−q/α)− 2]

+β [exp (q/β)− 1]
]
, (17)

where q = b/D. For R = 0, the case without multiplicative
noise, one obtains

TL (R = 0) =
L2D

4b2
[4 exp (q) + 2 exp (−q)− 6] . (18)

and for λ = 0, the case of independent noises, the MFPT
becomes

TL (λ = 0) =
L2D

4b2

[
4 exp

(
q

c2R+ 1

)
+2 exp

(
− q

c2R+ 1

)
− 6
] (
c2R+ 1

)
. (19)

Inserting equations (17, 18) into equation (13), we finally
obtain the relative escape rate when particles pass through
interval

[
−L2 ,

L
2

]
,

νL (R, λ) =
TL (R = 0)
TL (R, λ)

=
4 exp (q) + 2 exp (−q)− 6

WL (R, λ)
,

(20)

where

WL (R, λ) = (αβ)
1
2 [exp (q/α) (1− exp (−q/β))

+ (1− exp (q/β)) (exp (−q/α)− 1)]
+α [exp (q/α) + exp (−q/α)− 2]
+β [exp (q/β)− 1] .

In particular, for λ = 0, we have

νL (λ = 0) =
(2 exp (q) + exp (−q)− 3)[

2 exp
(

q

c2R+ 1

)
+ exp

(
− q

c2R+ 1

)
− 3
]

(c2R+ 1)
·

(21)

4 Nonlinear model

In the following, we discuss the relative escape rate of
Brownian particles under two kinds of nonlinear bistable
potentials with the same coefficient of the multiplicative
noise. The effects of the potential nonlinearity on the rel-
ative escape rate are analyzed by means of numerical cal-
culations. First, the relative escape rate of the particles
which goes through the parabolic potential is calculated,
then the case of the quartic potential is considered.

We assume the coefficient of the multiplicative noise
has the following form

g (x) =

{
c, −∞ < x ≤ −1, 0 < x ≤ 1

−c, −1 < x ≤ 0, 1 < x <∞
. (22)

4.1 Parabolic bistable potential

The nonlinear parabolic bistable potential is considered as
a second order approximation of a quartic potential (i.e.,
−x2/2 + x4/4) [14]

V (x) =



1
4

[ √
3√

3− 1
(x+ 1)2 − 1

]
, x ≤ − 1√

3

−1
4
[√

3x2
]
, − 1√

3
≤ x ≤ 1√

3

1
4

[ √
3√

3− 1
(x− 1)2 − 1

]
, x ≥ 1√

3

·

(23)

Inserting equations (22, 23) into equation (12), we obtain
MFPT of particles pass through interval [−1, 1]

TP (R, λ) = D−1

∫ 1

−1

H (x) exp [Φ (x) /D] dx

×
∫ x

−∞
H (y) exp [Φ (y) /D] dy, (24)
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H (x) =

8>><
>>:

α−
1
2 =

h
c2R+ 2cλ

√
R+ 1

i− 1
2
, −∞ < x ≤ −1, 0 < x ≤ 1

β−
1
2 =

h
c2R− 2cλ

√
R+ 1

i− 1
2
, −1 < x ≤ 0, 1 < x <∞

. (25)

H (x) =

8>><
>>:

α−
1
2 =

h
c2R+ 2cλ

√
R+ 1

i− 1
2
, −∞ < x ≤ −1, 0 < x ≤ 1

β−
1
2 =

h
c2R− 2cλ

√
R+ 1

i− 1
2
, −1 < x ≤ 0, 1 < x <∞

. (29)

where

See equation (25) above.

Since equation (24) can not be integrated exactly, we work
out TP (R, λ) by means of numerical integration, and then
calculate the relative escape rate

νP (R, λ) =
TP (R = 0)
TP (R, λ)

· (26)

4.2 Quartic bistable potential

The quartic potential are defined as

V (x) = −1
2
x2 +

1
4
x4. (27)

The MFPT of particles pass through the interval [−1, 1]
reads

TQ (R, λ) = D−1

∫ 1

−1

H (x) exp [Φ (x) /D] dx

×
∫ x

−∞
H (y) exp [Φ (y) /D] dy, (28)

where

See equation (29) above.

Also, equation (29) can not be integrated precisely, we
calculate TQ (R, λ) by numerical integration, and get the
relative escape rate

νQ (R, λ) =
TQ (R = 0)
TQ (R, λ)

· (30)

5 Conclusions and discussions

5.1 The relative escape rate in a linear potential field

From equation (20), we can see that the relative escape
rate νL(R, λ) in the linear potential field is not affected
by the width of the linear potential L since the expres-
sion νL(R, λ) is independent of L. However, the relative

Fig. 1. Relative escape rate νL(R,λ) vs. R at b = 0.25, c =
0.125, D = 0.1, and λ = 0.2.

escape rate is very sensitive to the parameter q (q = b/D)
and the coefficient of multiplicative noise c. When R is
large enough (R� 1), W (R, λ), the denominator of equa-
tion (20), approaches to 2q, thus the relative escape rate
νL tends to be a constant for a fixed value q. The curves of
νL ∼ R can exhibit different structures for different values
of λ.

(a) For small positive values of λ (e.g., λ = 0.2), νL in-
creases sharply with the increasing of R at first, then the
increase of νL becomes slow, and finally νL approaches to
a fixed value when R is increased large enough, as shown
in Figure 1. In this case, there is no extremum. However,
for λ ≥ 0.4, a suppression platform appears in the curve of
νL−RwhenR is relatively small, and the suppression plat-
form becomes wider as λ increases, which are presented in
Figure 2a. Also, when R is large enough, νL tends to a
fixed value, as shown in Figure 2b.

(b) Figures 3a, b show that, for λ < 0, νL exhibits one-
minimum and one-maximum structure. When R increases
at the beginning, the suppression platform appears; and it
becomes wider as λ decreases; as R increases continuously,
a peak emerges, which is called resonant activation, and
the peak grows higher as λ decreases. When R is large
enough, νL gradually decreases to a fixed value.

From the points of view of mathematics and physics,
the mechanism of the presented phenomena can be under-
stood as follows. For λ < 0, α = c2R + 2cλ

√
R + 1, and
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(a)

(b)

Fig. 2. Relative escape rate νL(R,λ) vs. R at b = 0.25,
c = 0.125 and D = 0.1 for different values of the correla-
tion coefficient: λ = 0.9 (solid line), λ = 0.7 (dashed line), and
λ = 0.4 (dash-dotted line). R varies in (a) R ∈ [0, 300]; (b)
R ∈ [300, 10 000].

for λ > 0, β = c2R − 2cλ
√
R + 1, both α and β have a

minimum at Rm = λ2/c2. Particularly, in the case of per-

fectly positive correlation λ = 1, α =
(
c
√
R − 1

)2

; also

β =
(
c
√
R− 1

)2

in the case of perfectly negative corre-

lation λ = −1. These cases lead to Rm = 1/c2, α and β
vanish, eq/α and eq/β approach to infinity, and W (R, λ) in
equation (20) tends to infinity. Consequently, the relative
escape rate νL approaches to zero. Even R varies near Rm,
W (R, λ) is large enough, and νL is still small. so that sup-
pression platform appears in Figures 2a and 3a. Indeed,
α = 0 or β = 0 implies that the effective noises disap-
pear, so that particles are in deterministic potential field
and can not surmount the barrier. On the other hand, for
λ < 0, the W (R, λ) ∼ R curve exists the two extrema
according to the extremal equation of W (R, λ) in equa-
tion (20), but has only one extremum for λ > 0. Therefore,
resonant activation and suppression platform appear suc-
cessively in the case of λ < 0, as shown in Figure 3, and

(a)

(b)

Fig. 3. Relative escape rate νL(R,λ) vs. R at b = 0.25,
c = 0.125, and D = 0.1 for different values of the correla-
tion coefficient: λ = −0.9 (solid line), λ = −0.7 (dashed line),
and λ = −0.4 (dash-dotted line). R varies in (a) R ∈ [0, 500];
(b) R ∈ [500, 200 000].

there only exists the suppression platform in the case of
λ > 0. In fact, in the case of λ < 0, the effective noise in-
tensity in equation (15) is taken as β = c2R+1+2 |λ| c

√
R,

in comparison with that of λ > 0, the effective noise inten-
sity in equation (15) taken as α = c2R+1−2λc

√
R, one has

β > c2R+ 1 > α, which means particles pass through the
barrier more easily for λ < 0 than the one for λ > 0, thus
leads to rather different tendencies between νL (λ > 0) and
νL (λ < 0) for R → ∞ in equation (20). νL(R, λ < 0) is
down to νL(R = ∞, λ), whereas νL(R, λ > 0) is up to
νL(R = ∞, λ), so that νL(R, λ < 0) is bound to expe-
rience the process from the suppression platform to the
resonant activation as R increases continuously.

5.2 The comparison of the relative escape rate
in different potential fields

Equations (26) and (30) are calculated numerically, and
the relative escape rate as a function of R in the parabolic
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(a)

(b)

(c)

(d)

Fig. 4. (a) Relative escape rate νP(R,λ) vs. R in the parabolic potential at λ = 0.2; (b) Relative escape rate νP(R,λ) vs. R
in the parabolic potential at λ = −0.2; (c) Relative escape rate νQ(R,λ) vs. R in the quarlic potential at λ = 0.2; (d) Relative
escape rate νQ(R,λ) vs. R in the quarlic potential at λ = −0.2. The other parameters are c = 0.125 and D = 0.1.

and quarlic potential fields is drawn in Figures 4–6, re-
spectively.

Figures 4a–d show that, when the value of the correla-
tion coefficient is small, the relative escape rate is always
increased monotonously with the increasing ofR whatever
the nonlinear potential field is parabolic or quarlic, or the
correlation coefficient is positive or negative, which are
different from that in the linear potential field for R� 1.
Meanwhile, in Figures 5 and 6, when |λ| is large, the rel-
ative escape rate only exhibits the suppression platform.
From this point of view, the resonant activation disappears
due to the nonlinearity of the potential field.

The effects of the nonlinear degree of the potential field
on the relative escape rate are shown in Figures 5 and 6.
When D is small and λ < 0, the relative escape rate in the
parabolic potential is close to that in the quartic potential
(see Fig. 5). However, Figures 6a, b show that, when D is
large, the relative escape rate in quartic potential is always
less than the case in the parabolic potential for λ < 0. By
contraries, the relative escape rate in quartic potential is
always larger than the case in the parabolic potential for
λ > 0.

In conclusion, we make a discussion of the results in
relation with some concrete applications. As indicated in

Fig. 5. Comparison of relative escape rate νP(R,λ) vs. R to
relative escape rate νQ(R,λ) vs. R at c = 0.125, D = 0.05,
and λ = −0.5. νP(R,λ) is indicated by the dashed line, and
νQ(R,λ) is indicated by the solid line.

reference [7], there exist realistic models showing bistabil-
ity, where the fluctuations in the model parameters are not
independent and such fluctuations do lead to noise contri-
butions of both additive and multiplicative character. The
potential physical application is given by the switching
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(a)

(b)

Fig. 6. Comparison of relative escape rate νP(R,λ) vs. R to
relative escape rate νQ(R,λ) vs. R at c = 0.125 and D = 0.1
for (a) λ = 0.5, and (b) λ = −0.5. νP(R,λ) is indicated by the
dashed line, and νQ(R,λ) is indicated by the solid line.

of magnetization in single-domain ferromagnetic particles
in which external and internal magnetic field fluctua-
tions are generally correlated and mutually influence
the bistable relaxation dynamics of the magnetic moment.

Moreover, the phenomena of resonant activation and sup-
pression platform and their variation are revealed in the
present work, which may crucially affect the transport in
the bistable system and indicate an alternative route of
controlling the escape phenomenon by varying the corre-
lation coefficient and the intensity ratio of the two noises.
Therefore, one can follow the procedure in reference [11]
to physically realize the controlling of correlation coeffi-
cient and intensity ratio of the two noises by means of an
electronic circuit with two different white noise sources.

This work has been supported by the National Natural Science
Foundation of China under grant No. 19975020.
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